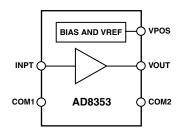


100 MHz-2.7 GHz RF Gain Block


AD8353

FEATURES

Fixed Gain of 20 dB Operational Frequency of 100 MHz to 2.7 GHz Linear Output Power Up to 9 dBm Input/Output Internally Matched to 50 Ω Temperature and Power Supply Stable Noise Figure 5.3 dB Power Supply 3 V or 5 V

APPLICATIONS
VCO Buffers
General Tx/Rx Amplification
Power Amplifier Predriver
Low Power Antenna Driver

FUNCTIONAL BLOCK DIAGRAM

PRODUCT DESCRIPTION

The AD8353 is a broadband, fixed-gain linear amplifier that operates at frequencies from 100 MHz up to 2.7 GHz. It is intended for use in a wide variety of wireless devices including cellular, broadband, CATV, and LMDS/MMDS applications.

By taking advantage of Analog Devices' high-performance complementary Si bipolar process, these gain blocks provide excellent stability over process, temperature, and power supply. This amplifier is single-ended and internally matched to 50 Ω with a return loss of greater than 10 dB over the full operating frequency range.

The AD8353 provides linear output power of 9 dBm with 20 dB of gain at 900 MHz when biased at 3 V and an external RF choke is connected between the power supply and the output pin. The dc supply current is 42 mA. At 900 MHz, the output third order intercept (OIP3) is greater than 23 dBm, and is 19 dBm at 2.7 GHz.

The noise figure is 5.3 dB at 900 MHz. The reverse isolation (S_{12}) is -36 dB at 900 MHz and -30 dB at 2.7 GHz.

The AD8353 can also operate with a 5 V power supply, in which case no external inductor is required. Under these conditions, the AD8353 delivers 8 dBm with 20 dB of gain at 900 MHz. The dc supply current is 42 mA. At 900 MHz, the OIP3 is greater than 22 dBm and is 19 dBm at 2.7 GHz. The noise figure is 5.6 dB at 900 MHz. The reverse isolation (S₁₂) is –35 dB.

The AD8353 is fabricated on Analog Devices' proprietary, high-performance 25 GHz Si complementary bipolar IC process. The AD8353 is available in a chip scale package that utilizes an exposed paddle for excellent thermal impedance and low impedance electrical connection to ground. It operates over a –40°C to +85°C temperature range.

An evaluation board is available.

$\textbf{AD8353-SPECIFICATIONS} \ \, (\textbf{V}_s = 3 \, \textbf{V}, \textbf{T}_A = 25^{\circ}\text{C}, 100 \, \text{nH external inductor between VOUT and VPOS}, \textbf{Z}_0 = 50 \, \Omega, \\ \textbf{unless otherwise noted.})$

Parameters	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		0.1		2.7	GHz
Gain	f = 900 MHz		19.8		dB
	f = 1.9 GHz		17.7		dB
	f = 2.7 GHz		15.6		dB
Delta Gain	$f = 900 \text{ MHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-0.97		dB
	$f = 1.9 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.15		dB
	$f = 2.7 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.34		dB
Gain Supply Sensitivity	$VPOS \pm 10\%, f = 900 \text{ MHz}$		0.04		dB/V
	f = 1.9 GHz		-0.004		dB/V
	f = 2.7 GHz		-0.04		dB/V
Reverse Isolation (S_{12})	f = 900 MHz		-35.6		dB
	f = 1.9 GHz		-34.9		dB
	f = 2.7 GHz		-30.3		dB
RF INPUT INTERFACE	Pin RFIN				
Input Return Loss	f = 900 MHz		22.3		dB
	f = 1.9 GHz		20.9		dB
	f = 2.7 GHz		11.2		dB
RF OUTPUT INTERFACE	Pin VOUT				
Output Compression Point	f = 900 MHz, 1 dB compression		9.1		dBm
	f = 1.9 GHz		8.4		dBm
	f = 2.7 GHz		7.6		dBm
Delta Compression Point	$f = 900 \text{ MHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.46		dB
	$f = 1.9 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.17		dB
	$f = 2.7 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1		dB
Output Return Loss	f = 900 MHz		26.3		dB
	f = 1.9 GHz		16.9		dB
	f = 2.7 GHz		13.3		dB
DISTORTION/NOISE					
Output Third Order Intercept	$f = 900 \text{ MHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		23.6		dBm
	$f = 1.9 \text{ GHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		20.8		dBm
	$f = 2.7 \text{ GHz}$, $\Delta f = 1 \text{ MHz}$, $P_{IN} = -28 \text{ dBm}$		19.5		dBm
Output Second Order Intercept	$f = 900 \text{ MHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		31.6		dBm
Noise Figure	f = 900 MHz		5.3		dB
	f = 1.9 GHz		6		dB
	f = 2.7 GHz		6.8		dB
POWER INTERFACE	Pin VPOS				
Supply Voltage		2.7	3	3.3	V
Total Supply Current		35	41	48	mA
Supply Voltage Sensitivity			15.3		mA/V
Temperature Sensitivity	-40° C $\leq T_{A} \leq +85^{\circ}$ C		60		μA/°C

Specifications subject to change without notice.

-2- REV. 0

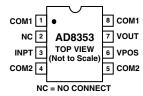
SPECIFICATIONS ($V_S = 5 \text{ V}, T_A = 25 ^{\circ}\text{C}$, no external inductor between VOUT and VPOS, $Z_0 = 50 \Omega$, unless otherwise noted.)

Parameters	Conditions	Min	Typ	Max	Unit
OVERALL FUNCTION					
Frequency Range		0.1		2.7	GHz
Gain	f = 900 MHz		19.5		dB
- ·· ·	f = 1.9 GHz		17.6		dB
	f = 2.7 GHz		15.7		dB
Delta Gain	$f = 900 \text{ MHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-0.96		dB
	$f = 1.9 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.18		dB
	$f = 2.7 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.38		dB
Gain Supply Sensitivity	$VPOS \pm 10\%, f = 900 \text{ MHz}$		0.09		dB/V
The state of the s	f = 1.9 GHz		-0.01		dB/V
	f = 2.7 GHz		-0.09		dB/V
Reverse Isolation (S ₁₂)	f = 900 MHz		-35.4		dB
(-12)	f = 1.9 GHz		-34.6		dB
	f = 2.7 GHz		-30.2		dB
RF INPUT INTERFACE	Pin RFIN				
Input Return Loss	f = 900 MHz		22.9		dB
input Return 2000	f = 1.9 GHz		21.7		dB
	f = 2.7 GHz		11.5		dB
RF OUTPUT INTERFACE	Pin VOUT				
Output Compression Point	f = 900 MHz		8.3		dBm
Output Compression Fourt	f = 1.9 GHz		8.1		dBm
	f = 2.7 GHz		7.5		dBm
Delta Compression Point	$f = 900 \text{ MHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.05		dB
Betta Compression Form	$f = 1.9 \text{ GHz}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$		-1.49		dB
	$f = 2.7 \text{ GHz}, -40^{\circ}\text{C} \le T_A \le +85^{\circ}\text{C}$		-1.33		dB
Output Return Loss	f = 900 MHz		27		dB
Output Return Loss	f = 1.9 GHz		22		dB
	f = 2.7 GHz		14.3		dB
DISTORTION/NOISE					
Output Third Order Intercept	$f = 900 \text{ MHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		22.8		dBm
output Tima order intercept	$f = 1.9 \text{ GHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		20.6		dBm
	$f = 2.7 \text{ GHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		19.5		dBm
Output Second Order Intercept	$f = 900 \text{ MHz}, \Delta f = 1 \text{ MHz}, P_{IN} = -28 \text{ dBm}$		30.3		dBm
Noise Figure	$f = 900 \text{ MHz}, \Delta f = 1 \text{ WHz}, T_{IN} = 20 \text{ dBm}$		5.6		dB
Noise Figure	f = 1.9 GHz		6.3		dB
	f = 2.7 GHz		7.1		dB
POWER INTERFACE	Pin VPOS		111		
Supply Voltage	rm vros	4.5	5	5.5	V
		35		5.5 52	
Total Supply Current) 33	42	52	mA m A /V
Supply Voltage Sensitivity	10°C < T < ±05°C		4.3		mA/V
Temperature Sensitivity	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$		45.7		μA/°C

Specifications subject to change without notice.

REV. 0 -3-

ABSOLUTE MAXIMUM RATINGS*


Supply Voltage VPOS 5.5 V
Input Power (re: 50Ω)
Equivalent Voltage
Internal Power Dissipation
Paddle Not Soldered
Paddle Soldered 812 mW
θ_{JA} (Paddle Soldered) 80°C/W
θ _{JA} (Paddle Not Soldered) 200°C/W
Maximum Junction Temperature 150°C
Operating Temperature Range40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature Range (Soldering 60 sec) 240°C

^{*}Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

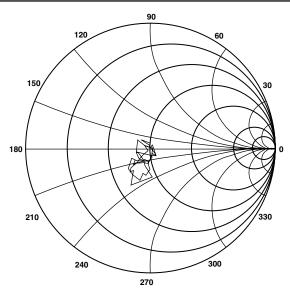
ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
AD8353ACP–REEL7 AD8353–EVAL	-40°C to +85°C	7" Tape and Reel Evaluation Board	

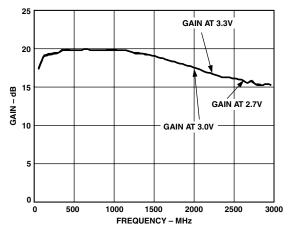
PIN CONFIGURATION

PIN FUNCTION DESCRIPTIONS

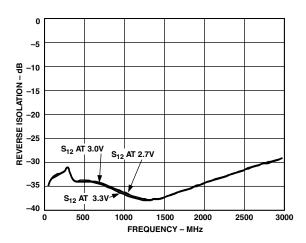
Pin	Mnemonic	Description
1, 8	COM1	Device Common.
		Connect to low
		impedance ground.
3	INPT	RF Input Connection.
		Must be ac-coupled.
4, 5	COM2	Device Common.
		Connect to low
		impedance ground.
6	VPOS	Positive Supply Voltage
2	NC	No Connection
7	VOUT	RF Output Connection.
		Must be ac-coupled.

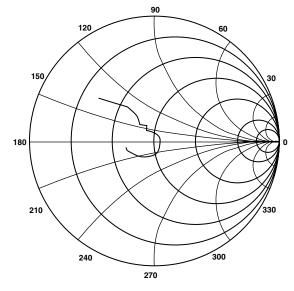

CAUTION_

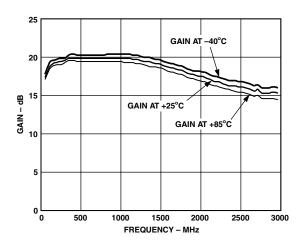
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8353 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

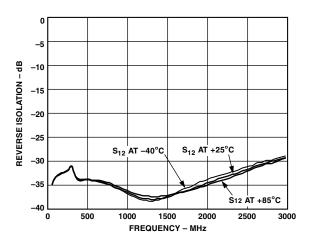


-4- REV. 0

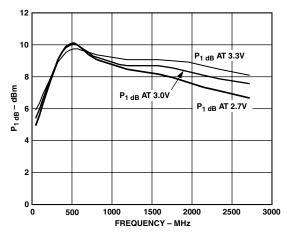

Typical Performance Characteristics—AD8353


TPC 1. S_{11} vs. Frequency, $V_S = 3$ V, $T_A = 25$ °C, 100 MHz $\leq f \leq 3$ GHz

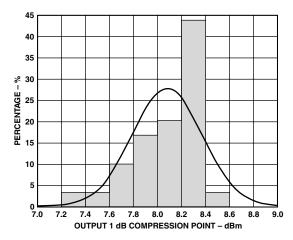

TPC 2. Gain vs. Frequency, $V_S = 2.7$ V, 3 V, and 3.3 V, $T_A = 25$ °C


TPC 3. Reverse Isolation vs. Frequency, V_S = 2.7 V, 3 V, and 3.3 V, T_A = 25°C

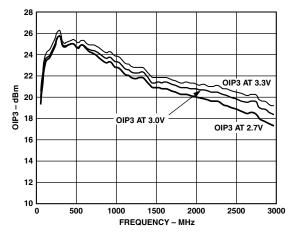
TPC 4. S_{22} vs. Frequency, $V_S = 3$ V, $T_A = 25^{\circ}$ C, 100 MHz $\leq f \leq 3$ GHz

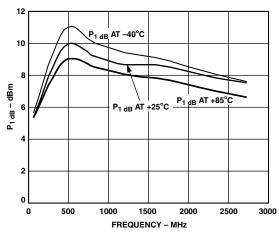


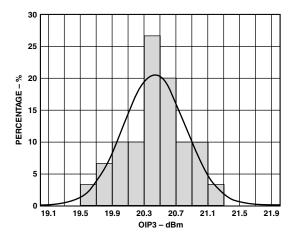
TPC 5. Gain vs. Frequency, $V_S = 3$ V, $T_A = -40$ °C, +25°C, and +85°C

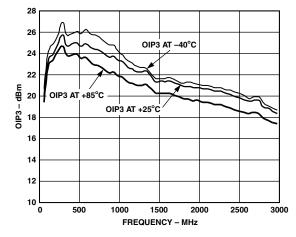


TPC 6. Reverse Isolation vs. Frequency, $V_S = 3 V$, $T_A = -40 ^{\circ}\text{C}$, $+25 ^{\circ}\text{C}$, and $+85 ^{\circ}\text{C}$

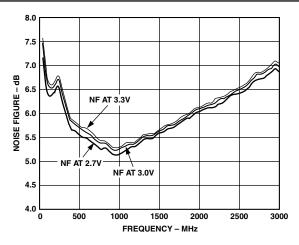

REV. 0 -5-


TPC 7. $P_{1 dB}$ vs. Frequency, V_S = 2.7 V, 3 V, and 3.3 V, T_A = 25°C

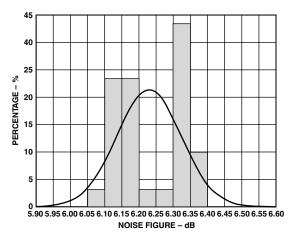

TPC 8. Distribution of $P_{1 dB}$ $V_S = 3 V$, $T_A = 25$ °C, f = 2.2 GHz


TPC 9. OIP3 vs. Frequency, V_S = 2.7 V, 3 V, and 3.3 V, T_A = 25°C

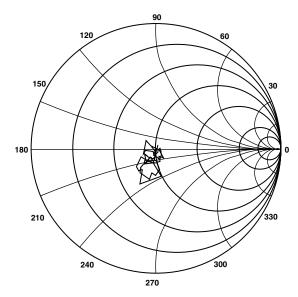
TPC 10. $P_{1\,dB}$ vs. Frequency, $V_S=3$ V, $T_A=-40^{\circ}C$, $+25^{\circ}C$, and $+85^{\circ}C$

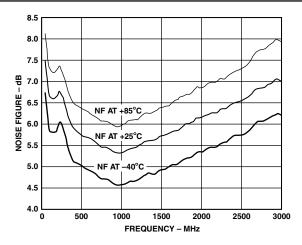


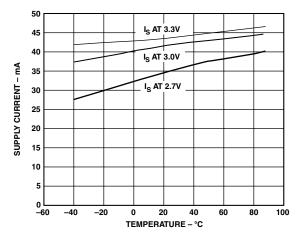
TPC 11. Distribution of OIP3, $V_S = 3 V$, $T_A = 25$ °C, f = 2.2 GHz

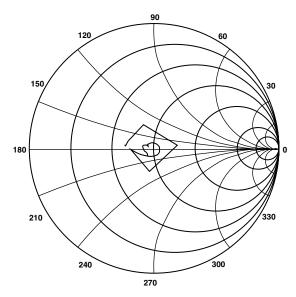


TPC 12. OIP3 vs. Frequency, $V_S = 3$ V, $T_A = -40$ °C, +25°C, and +85°C

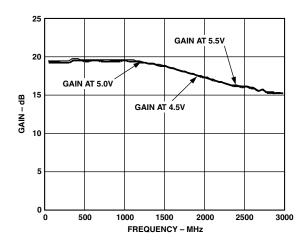

-6- REV. 0


TPC 13. Noise Figure vs. Frequency, $V_S = 2.7 \text{ V}$, 3 V, and 3.3 V, $T_A = 25^{\circ}\text{C}$

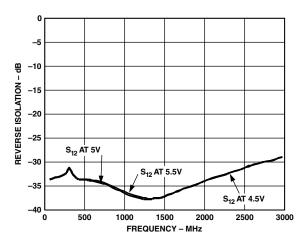

TPC 14. Distribution of Noise Figure, $V_S = 3 V$, $T_A = 25$ °C, f = 2.2 GHz


TPC 15. S_{11} vs. Frequency, $V_S = 5 V$, $T_A = 25^{\circ} C$, 100 MHz $\leq f \leq 3$ GHz

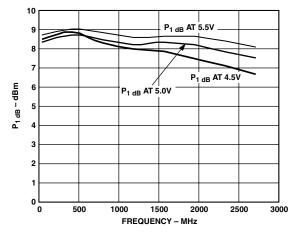
TPC 16. Noise Figure vs. Frequency, $V_S = 3 V$, $T_A = -40^{\circ}C$, $+25^{\circ}C$, and $+85^{\circ}C$

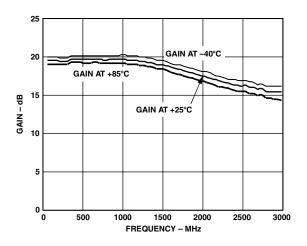


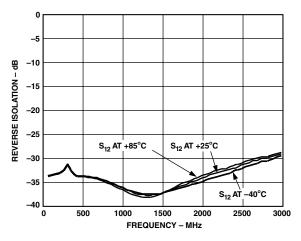
TPC 17. Supply Current vs. Temperature, $V_S = 2.7 V$, 3 V, and 3.3 V

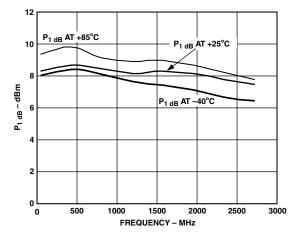


TPC 18. S_{22} vs. Frequency, $V_S = 5$ V, $T_A = 25^{\circ}$ C, 100 MHz $\leq f \leq 3$ GHz

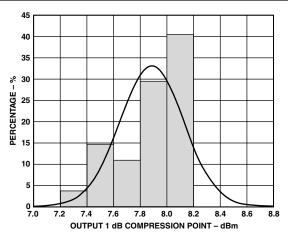

REV. 0 -7-


TPC 19. Gain vs. Frequency, V_S = 4.5 V, 5 V, and 5.5 V, T_A = 25°C

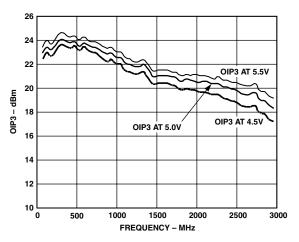

TPC 20. Reverse Isolation vs. Frequency, $V_S = 4.5 \text{ V}$, 5 V, and 5.5 V, $T_A = 25 ^{\circ}\text{C}$


TPC 21. $P_{1\,dB}$ vs. Frequency, $V_S=4.5~V$, 5 V, and 5.5 V, $T_A=25^{\circ}C$

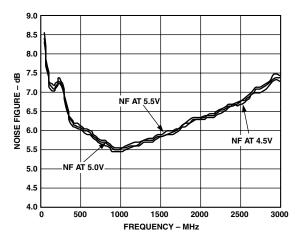
TPC 22. Gain vs. Frequency, $V_S = 5$ V, $T_A = -40$ °C, +25°C, and +85°C

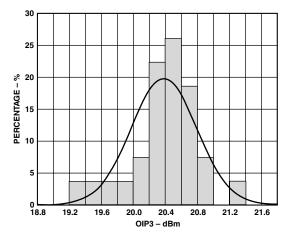


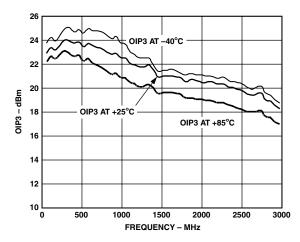
TPC 23. Reverse Isolation vs. Frequency, $V_S = 5 V$, $T_A = -40^{\circ}\text{C}$, $+25^{\circ}\text{C}$, and $+85^{\circ}\text{C}$

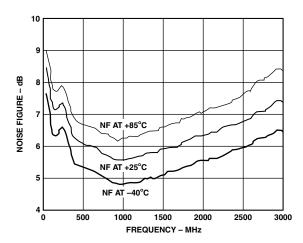


TPC 24. $P_{1 dB}$ vs. Frequency, $V_S = 5 V$, $T_A = -40 ^{\circ} C$, $+25 ^{\circ} C$, and $+85 ^{\circ} C$

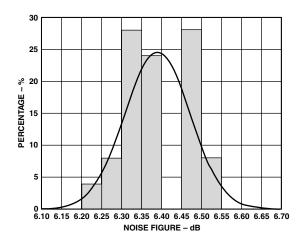

-8- REV. 0


TPC 25. Distribution of $P_{1 dB}$, $V_S = 3 V$, $T_A = 25$ °C, f = 2.2 GHz

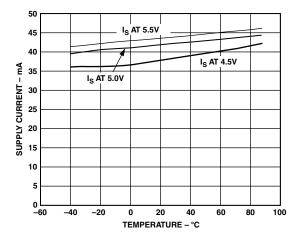

TPC 26. OIP3 vs. Frequency, V_S = 4.5 V, 5 V, and 5.5 V, T_A = 27°C


TPC 27. Noise Figure vs. Frequency, V_S = 4.5 V, 5 V, and 5.5 V, T_A = 25°C

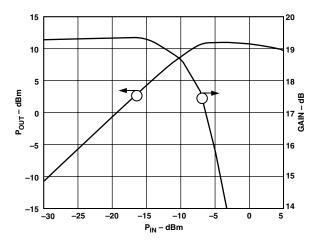
TPC 28. Distribution of OIP3, $V_S = 5$ V, $T_A = 25$ °C, f = 2.2 GHz

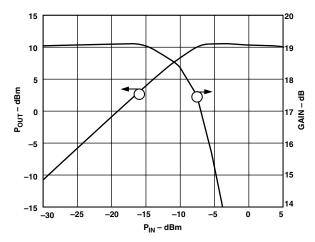


TPC 29. OIP3 vs. Frequency, $V_S = 5$ V, $T_A = -40$ °C, +25°C, and +85°C



TPC 30. Noise Figure vs. Frequency, $V_S = 5$ V, $T_A = -40$ °C, +25°C, and +85°C


REV. 0 -9-


TPC 31. Distribution of Noise Figure, $V_S = 5 V$, $T_A = 25$ °C, f = 2.2 GHz

TPC 32. Supply Current vs. Temperature, $V_S = 4.5 \ V$, 5 V, and 5.5 V

TPC 33. Output Power and Gain vs. Input Power, $V_S = 3 \text{ V}$, $T_A = 25^{\circ}\text{C}$, f = 900 MHz

TPC 34. Output Power and Gain vs. Input Power, $V_S = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$, f = 900 MHz

-10- REV. 0

THEORY OF OPERATION

The AD8353 is a two-stage feedback amplifier employing both shunt-series and shunt-shunt feedback. The first stage is degenerated and resistively loaded, and provides approximately 10 dB of gain. The second stage is a PNP-NPN Darlington output stage, which provides another 10 dB of gain. Series-shunt feedback from the emitter of the output transistor sets the input impedance to 50 Ω over a broad frequency range. Shunt-shunt feedback from the amplifier output to the input of the Darlington stage helps to set the output impedance to 50 Ω . The amplifier can be operated from a 3 V supply by adding a choke inductor from the amplifier output to VPOS. Without this choke inductor, operation from a 5 V supply is also possible.

BASIC CONNECTIONS

The AD8353 RF Gain Block is a fixed-gain amplifier with single-ended input and output ports whose impedances are nominally equal to 50 Ω over the frequency range 100 MHz to 2.7 GHz. Consequently, it can be directly inserted into a 50 Ω system with no impedance-matching circuitry required. The input and output impedances are sufficiently stable versus variations in temperature and supply voltage that no impedance matching compensation is required. A complete set of scattering parameters is available at the Analog Devices website (www.analog.com).

The input pin (INPT) is connected directly to the base of the first amplifier stage, which is internally biased to approximately 1 V, so a dc-blocking capacitor should be connected between the source that drives the AD8353 and the input pin, INPT.

It is critical to supply very low inductance ground connections to the ground pins (pins 1, 4, 5, and 8) as well as to the backside exposed paddle. This will ensure stable operation.

The AD8353 is designed to operate over a wide supply voltage range, from 2.7 V to 5.5 V. The output of the part, VOUT, is taken directly from the collector of the output amplifier stage. This node is internally biased to approximately 2.2 V when the supply voltage is 5 V. Consequently, a dc-blocking capacitor should be connected between the output pin, VOUT, and the load that it drives. The value of this capacitor is not critical, but it should be 100 pF or larger.

When the supply voltage is 3 V, it is recommended that an external RF choke be connected between the supply voltage and the output pin, VOUT. This will increase the dc voltage applied to the collector of the output amplifier stage, which will improve performance of the AD8353 to be very similar to the performance produced when 5 V is used for the supply voltage. The inductance of the RF choke should be approximately 100 nH, and care should be taken to ensure that the lowest series self-resonant frequency of this choke is well above the maximum frequency of operation for the AD8353.

The supply voltage input, VPOS, should be bypassed using a large value capacitance (approximately $0.47~\mu F$ or larger) and a smaller, high-frequency bypass capacitor (approximately 100~pF) physically located close to the VPOS pin.

The recommended connections and components are shown in the schematic of the AD8353 evaluation board.

APPLICATIONS

The AD8353 RF Gain Block may be used as a general purpose fixed-gain amplifier in a wide variety of applications, such as a driver for a transmitter power amplifier (Figure 1). Its excellent reverse isolation also makes this amplifier suitable for use as a local oscillator buffer amplifier that would drive the local oscillator port of an up or down converter mixer (Figure 2).

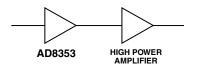


Figure 1. AD8353 as a Driver Amplifier

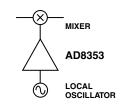


Figure 2. AD8353 as a LO Driver Amplifier

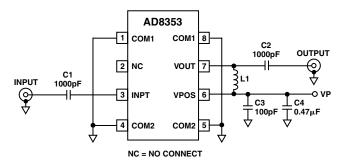


Figure 3. Evaluation Board Schematic

EVALUATION BOARD

Figure 3 shows the schematic of the AD8353 evaluation board. Note that L1 is shown as an optional component that is used to obtain maximum gain only when V_P = 3 V. The board is powered by a single supply in the range 2.7 V to 5.5 V. The power supply is decoupled by a 0.47 μ F and a 100 pF capacitor.

Table I. Evaluation Board Configuration Options

Component	Function	Default Value
C1, C2	AC-Coupling Capacitors	1000 pF, 0603
C3	High-Frequency Bypass	_
	Capacitor	100 pF, 0603
C4	Low-Frequency Bypass	_
	Capacitor	0.47 μ F , 0603
L1	Optional RF Choke,	
	used to increase current	
	through output stage	
	when $V_P = 3 \text{ V}$.	
	Not recommended for use	
	when $V_P = 5 \text{ V}$.	100 nH, 0603

REV. 0 –11–

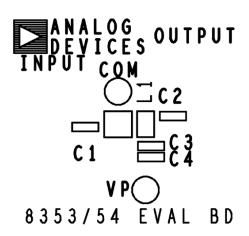


Figure 4. Silkscreen Top

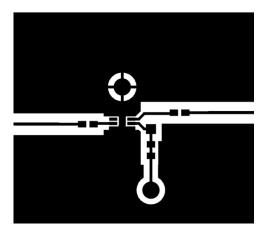


Figure 5. Component Side

OUTLINE DIMENSIONS

Dimensions shown in millimeters.

8-Lead LFCSP (CP-8)

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.